Search results

Search for "plasmonic metal nanostructures" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • /nanopore; nano/microstructures; SERS substrate; Introduction Surface-enhanced Raman spectroscopy (SERS) can be used to detect biomolecules [1][2][3], explosives [4][5][6], and pesticide residues [7][8][9]. Plasmonic metal nanostructures are often used as SERS substrates to increase the molecule-specific
PDF
Album
Full Research Paper
Published 16 Oct 2020

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • parameters of plasmonic metal nanostructures such as particle size, work function, surface facet and plasmonic band is a challenging task that demands numerical simulation. It is known that the photocatalysis performance is affected by the noble metal particle size and thus finite difference time domain
PDF
Album
Review
Published 19 Feb 2018

Laser irradiation in water for the novel, scalable synthesis of black TiOx photocatalyst for environmental remediation

  • Massimo Zimbone,
  • Giuseppe Cacciato,
  • Mohamed Boutinguiza,
  • Vittorio Privitera and
  • Maria Grazia Grimaldi

Beilstein J. Nanotechnol. 2017, 8, 196–202, doi:10.3762/bjnano.8.21

Graphical Abstract
  • dots [10], to the use of metal grafting [11][12][13][14] or plasmonic metal nanostructures [15][16][17][18][19] and the preparation of oxygen-deficient and/or hydrogen-rich TiOx [20][21][22]. We are interested, in particular, in this last approach. Hydrogenated black TiO2 has attracted attention due to
PDF
Album
Full Research Paper
Published 19 Jan 2017

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent
  • visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given. Keywords: carbon nanostructures; nanostructure sensitization; plasmonic metal nanostructures; quantum
  • utilize solar energy for the investigation of photocatalysis. There is a large array of excellent review articles covering selected aspects of the design of photocatalysts in the past years. In this review, we focus on a variety of nanostructures including quantum dots, plasmonic metal nanostructures and
PDF
Album
Review
Published 23 May 2014

Optical near-fields & nearfield optics

  • Alfred J. Meixner and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2014, 5, 186–187, doi:10.3762/bjnano.5.19

Graphical Abstract
  • far-field tweezers. In spite of the high efficiency of plasmonic metal nanostructures, the near-field enhancement of dielectric structures is preferable for some applications. Walhorn et al. [8] have developed a method for the simultaneous recording of topography and fluorescence that allows for the
PDF
Editorial
Published 19 Feb 2014

Near-field effects and energy transfer in hybrid metal-oxide nanostructures

  • Ulrich Herr,
  • Balati Kuerbanjiang,
  • Cahit Benel,
  • Giorgos Papageorgiou,
  • Manuel Goncalves,
  • Johannes Boneberg,
  • Paul Leiderer,
  • Paul Ziemann,
  • Peter Marek and
  • Horst Hahn

Beilstein J. Nanotechnol. 2013, 4, 306–317, doi:10.3762/bjnano.4.34

Graphical Abstract
  • semiconductors. Plasmonic-metal nanostructures are also promising for increasing the conversion efficiency of solar energy directly into chemical energy (see review in [7]), such as in plasmon-enhanced water splitting. These systems depend on the close interaction between metallic nanoparticles and
  • ”) allow probing locally the electromagnetic field in the vicinity of the plasmonic metal nanostructures. Also, since nonradiative recombination is an alternative to the radiative emission process in the nanophosphors, we may expect to learn more about the transfer of charge between metal and nonmetal from
PDF
Album
Full Research Paper
Published 14 May 2013
Other Beilstein-Institut Open Science Activities